新型高密度物联网组网系统与应用示例

北京芯同汇科技有限公司

- 00 物联网应用痛点
- **22** 高密度创新组网方案
- 03 高密度组网示例应用

1.1 物联网新机遇

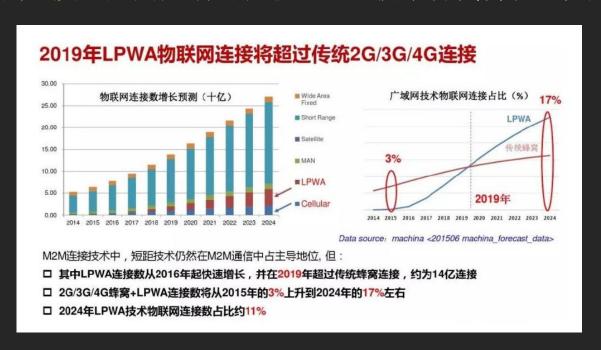
1. 迎接大数据时代的到来

在2019年,将有大约36亿台设备 主动连接到互联网,用于日常任务。 随着5G的推出,将为更多设备和数据 流量打开大门。

3、物联网设备爆炸式增长

根据国际数据公司(IDC)的数据,到2021年,物联网支出将达到1.4万亿美元。物联网网是少数几个被新兴和传统风险投资家感兴趣的市场之一。智能设备的普及和客户越来越依赖于使用它们来完成日常任务,这将增加投资物联网初创公司的兴奋感。

2. 全数字化管理+云服务


/	Gartner 报告	IDC 报告
1	自主设备(机器人、无人机、自动驾驶)	人工智能成为新的用户界面
2	增强分析 (机器学习)	新的开发者阶层(数字化转型)
3	AI 驱动的开发(协助开发人员)	应用开发革命(微服务架构)
4	数字孪生 (实体世界数字化)	数字化经济
5	赋权的边缘(边缘计算)	边缘计算快速增长
6	沉浸式体验(虚拟现实 VR 增强现实 AR 混合现实 MR)	数字化创新爆发
7	区块链 (去中心化信任)	更高的信任度(数据加密、自动化、区块 链)
8	智能空间(智慧城市、智能家居、数字 工厂等)	机构使用多云服务 (混合云)
9	数字道德和隐私 (大数据安全)	数字化原生 IT
10	量子计算(量子计算应用)	通过专业化实现的增长(量子计算机、 SAAS)

1.2 物联网与战略应用融合

1.3 物联网庞大市场需求

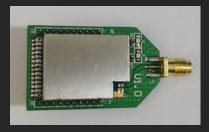
庞大的市场需求以及全球物联网占比小,亟待低成本、低功耗、广 覆盖、高密度、应用灵活的物联网组网技术替代传统通信方式。

1.4 物联网应用痛点

- 业界都认可未来IOT万物互联的发展趋势,更倾向让设备连接到互
- ◆ 联网中,目前,真正承载到移动网络上的物与物联接只占到联接 总数的10%,现有时序异步组网的内网频谱干扰严重问题,无法 实现高密度的广域覆盖。
- ◆ 物联网节点应用较多,但总体系统成本高,传输数据少弊端, 急需总体系成本低的组网技术。
- ◆ 物联网应用中,存在<u>应用不灵活</u>,不可配置通信速率等组网系统。

高密度创新组网方案 2.5 经典示例

- 2.1 创新型组网方案
- 2.2 远距离高密度方案
- 2.3 低成本高密度方案
- 2.4 硬件及现场测试


2.1.1 创新型组网特点

- 1、"时序化同步组网"——空中接口无时间资源损耗, 无内网干扰,自主创新研发享有专利保护;
- 2、"可配置通信速率和帧周期"结合现场应用环境配置通信速率,调至最优通信配置模式,应用方便灵活;
- 3、"多路映射节点及多路映射网关模式,可堆叠进一步扩容,更高容量密度"解决升级中扩容需求,降低整体成本。
- 4、"高增益定向铜棒天线(10dBi)"助信号实力穿墙,进一步增大通信距离。

2.1.2 高密度组网系统

针对现有物联网网关存在的各种局限,我们实现了时序化全同步、无内网干扰,速率和帧周期可配置,网关可堆叠扩容的两种创新型组网系统,可提交用户完整应用方案,减少项目时间周期。

- 一、远距离高密度系统-基于LoRa组网应用方案;
- 二、低成本高密度系统—基于CC系列组网应用方案;

LoRa节点内部电路

网关内部电路

CC系列节点内部电路

2.1.3 高密度组网完整应用系统

为减少项目开发周期,两种创新型高密度组网均可提交用户完整应用系统,可直接应用于实际项目。

- 1、研发核心资料: 节点网关硬件设计图和电路图、程序源码、编程指南、测试指南、用户指南,直接应用实际项目,减短项目设计时间周期。
- 2、**硬件单元**: 节点硬件单元、组网硬件单元、节点与组网多种可选天线、直接应用实际项目,减短项目生产时间周期。
- 3、**测试仪器**:便携式频谱仪、频率计、信号源等测试仪器,可直接应用于现场测试无线干扰信号,选择最优通信频率,以及测试通信信号功率等,减短现场施工时间周期。
- 4、**配套设备**: 高增益定向铜棒天线,创新型无线CT传感器等可优化替代设备。

2.1.4 高密度创新型方案优点

指标	远距离高密度LoRa网关	市场LoRa网关
节点容量密度	可映射 多路网关多路主节点 模式 一路主节点 200多 节点 (可扩四路主节点)	单主节点单网关 一般可配置 50多 节点
通信距离	外接高增益天线达到3km通信距离	一般在 1.5km 左右通信距离
系统成本	多节点少网关 总系统成本低	少节点多网关总系统成本高
信道干扰	时序化同步, 无内部干扰	存在内部干扰
应用灵活性	帧周期,通信速率,通信方式 可选可配	一般帧周期、通信速率 不可配
方案实施	配套仪器测试性能 少网关整体 部署方便	无配套仪器测试性能 多网关部署复杂

2.1.5 高密度创新型组网——平均成本低

	高密度创新型组网系统	现有组网系统
1、节点成本	相比LoRa芯片,CC系列芯片价格更低 LoRa芯片价格15元左右,CC系列仅有5元左右	NB—IOT节点模块价格 百元以上
2、网关成本	采用 低功耗低成本MCU 实现底层组网 价格仅有15元左右	LoRa网关芯片,需授权 价格 大概50元左右
3、工作模式	多节点少网关工作模式 减 少网关数量,著减组网系统平均成本	多网关多节点工作模式 组网系统平均成本高
4、远域覆盖	节点采用普通天线, 网关采用高增益定向铜 棒天线 ,整体降低组网系统平均成本	节点与网关均需采用高 增益天线
5、施工成本	便携式仪器辅助现场组网系统实施 部署方便,减少工人成本	没有仪器现场实施 部署时间长

高密度创新组网方案 2.5 经典示例

○ 2.1 创新组网方案

2.2 远距离高密度方案

2.3 低成本高密度方案

2.4 硬件及现场测试

2.2.1 现有LoRa组网方案局限

LoRa作为新型通信技术,实现了物联网远距离的需求。但现有LoRa组网方案仍然存在许多不足。

现有LoRa组网方案局限:

- 1、采用专用LoRa网关芯片实现组网,高成本,需授权;
- 2、内网干扰,LoRa组网节点设备和网络的增多
- ,即使不同频率,泄漏信号也会存在信号干扰;
- 3、**灵活应用性差**,无法根据现场环境实现速率 与更新周期等参数自由配置,二次开发难度大;
- **4、扩容不方便**,网络升级过程中,往往有扩容的需求;

LoRa网关芯片应用

2.2.2 远距离高密度方案——基于LoRa组网

- 1、"时序化同步组网",无内网干扰解决了现有时序异步组网的内网频 <u>谱干扰严重问题,自主创新研发享有专利保护。</u>
- 2、"集成低功耗MCU模组底层组网",无需LoRa网关芯片实现组网,内置固件完成时序调度,接口协议转换,缓存与检错,可以配置通信速率、帧周期和节点个数,便于用户进行功能二次开发。
- 3、"高灵敏度",LoRa调制方式、频谱扩宽处理技术以及高增益定向天线,解决了小数据量在复杂环境中的远距离通信问题,实现广域覆盖。
 - 4、"小体积" LoRa芯片外形小巧,基于LoRa组网系统整体设计体积小,应用灵活,应用空间范围小的现场环境。

2.2.3 基于LoRa模组

LoRa模组特点:

- 1、"抗干扰性能强"嵌套式金属屏蔽盖保护,采用贴片式封装;
- 2、"集成低功耗MCU模组"内置固件完成时序调度,接口协议转换,缓存与检错;
- 3、"SMA纯铜公接头"低损耗传输,信号强,信号不掉线:
- 4、"唯一ID"LoRa芯片唯一ID(地址长度可配置),方便产品后期跟踪和追溯;
- 5、"高灵敏度"远距离通信,实现广域覆盖;

2.2.4 基于LoRa节点模块

LoRa节点特点(客户可自行修改设计):

- 1、低纹波电源模块,宽压输入(DC5V, DC12~24V);
- 2、工业级LoRa模块,性能稳定,能较好地适应工业环境;
- 3、多种速率配置,自行修改配置网络通信速率;
- 4、多种通讯端口,支持RS232/RS485端口;
- 5、数字隔离器,降低接地环路的噪声,避免安全风险。
- 6、**功率测试方便**,采用自主研发便携式频谱仪测试LoRa 节点发射功率,操作简单快捷(也可用于现场测量);
- 7、高增益定向铜棒天线, 经过矢量网络分析仪调优, 增益达到10dBi, 性能更好;

2.2.5 基于LoRa网关

LoRa网关可配置多路节点通信组网(一个网关最大支持四路节点同时通信),同步TDMA模式,帧周期和通信速率可软件设置,上行输出支持串口/以太网和CAN,接口灵活,用户自行选择。

功能特点

- 1、 支持<mark>四路节点</mark>同时通信, **节点设备容量大**, 一个网关可容纳200个节点同时在线(每个节点又可通过485带多路数据);
- 2、同步TDMA机制,避免了异步泄漏与阻塞干扰,无内网干扰;
- 3、**组网灵活**,内部时序,通信速率等均可自由设置,网关可堆叠使用;
- 4、扩展多种通信接口,支持高速串口/CAN总线/WAN以太网等;
- 5、<mark>调试信息显示</mark>,OLED液晶与状态指示灯显示通信状态;
- 6、协议自定义,广义透传,便于用户自行修改应用。

2.2.6 LoRa网关

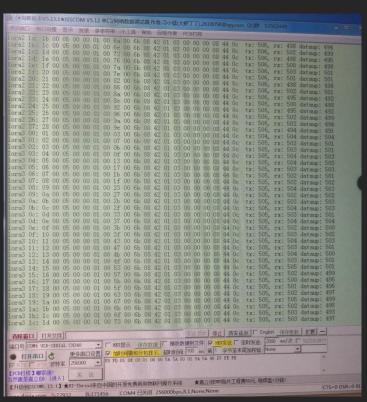
- 1、"时序化同步组网",无内网干扰 ,解决了时序异步组网的内网频谱干扰 十分严重,容纳节点密度小等不足。
- 2、"高灵敏度,远距离通信"LoRa调制方式,以及高增益定向铜棒天线,可扩展主节点增强版,实现广域覆盖,扩展通信距离,各种复杂环境均可灵活应用,如智能电表采集,地下综合管廊,市政环卫等。
- 3、LoRa网关时序、速率、节点容量等均可配置,灵活性高,支持"升级开发"用户自行修改设计。

2.2.7 LoRa组网系统——四路节点测试示例

四路节点测试示例

第一路主节点

第三路主节点


第二路主节点

第四路主节点

2.2.8 LoRa组网测试——多节点测试示例

采用4个节点模拟200个节点,长时间测试无线通信效率,测试结果如图所示:

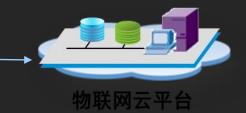
通讯跳口 单口设置 显示 发送 多字符串 小工具 帮助 回报作者 PCB打样 00 00 01 00 8b 00 6b 08 42 01 03 00 00 00 08 44 0c tx: 1260, rx: 1199 dataup: 1179 00 00 01 00 8f 00 6b 08 42 01 03 00 00 00 08 44 0c tx: 1250, rx: 1207 dataup: 1184 25 00 05 00 00 01 00 93 00 6b 08 42 01 03 00 00 00 08 44 0c tx: 1260, rx: 1194 dataup: 1166 6b 08 42 01 03 00 00 00 08 44 0c tx: 1267, rx: 1266 dataup: 1259 6b 08 42 01 03 00 00 00 08 44 0c tx; 1267, rx: 1264 dataup: 1260 ora4 02: 03 00 05 00 00 01 00 0c 00 66 08 42 01 03 00 00 08 44 0c tx: 1267, rx: 1252 dataup: 1248 ora4 03: 04 00 05 00 00 01 00 10 00 66 08 42 01 03 00 00 00 08 44 0c tx: 1267, rx: 1253 dataup: 1251 ora4 04: 05 00 05 00 00 01 00 14 00 66 08 42 01 03 00 00 00 08 44 0c tx: 1267, rx: 1263 dataup: 1259 ora4 05: 06 00 05 00 00 01 00 18 00 66 08 42 01 03 00 00 00 08 44 0c tx: 1267, rx: 1249 dataup: 1247 00 01 00 5c 00 6b 08 42 01 03 00 00 00 08 44 0c tx: 1267, rx: 00 50 00 6b 08 42 01 03 00 00 00 08 44 0c tx: 1267, rx: 1261 00 64 00 6b 08 42 01 03 00 00 00 08 44 0c tx: 1267, rx: 1256 detaup: 1255 00 68 00 6b 03 42 01 03 00 00 00 08 44 0c tx: 1267, rx: 1254 dataup: 1250 18:52:02.784] 1x ← ♦ 08 42 01 03 00 00 00 08 44 0c tx: 1267, rx: 1252 dataup: 1256 lora4 1c: 1d 00 05 00 00 01 00 74 00 6b 08 42 01 03 00 00 00 08 44 0c tx: 1267, rx: 1250 dataup: 1241 lora4 1d: le 00 05 00 00 01 00 78 00 6b 08 42 01 03 00 00 00 08 44 0c tx: 1267, rx: 1252 dataup: 1248 lora4 le: 1f 00 05 00 00 01 00 7c 00 6b 08 42 01 03 00 00 08 44 0c tx: 1267, rx: 1251 dataup: 1244 lora4 1f: 20 00 05 00 00 01 00 80 00 6b 08 42 01 03 00 00 00 08 44 0c tx: 1267, rx: 1254 dataup: 1248 波特室: 256000 [PC時]年] 椰家强? 当然数是高立创 [进入] 【升级导SSCOWS 13 1】 ★17-Thread来自中国的开源免费商用物联网操作系统 www.daxia.com S:101266 R:190393 COM4 已美用 256000bps,8,1,None,None

节点4通信1200次测试

节点2通信500次测试

2.2.9 多路映射LoRa网关模式实施框图

专 I I



LoRa节点

LoRa网关

LoRa节点连接终端传感器,获取数据,通过无线通信将数据传输给 LoRa网关,可映射多路网关模式,所有网关将数据上报云平台,实现在 线实时监测系统。

高密度创新组网方案 2.5 经典示例

- 2.1 创新组网方案
- 2.2 远距离高密度方案
- 2.3 低成本高密度方案
- 2.4 硬件及现场测试

2.3.1 CC系列组网系统

基于现有LoRa网关应用,后期又推出基于CC系列实现**时序化同步、无内网** 干扰,速率和周期可配置,网关可堆叠扩容,远距离通信的整套 系统。

CC系列组网系统特点:低成本,高容量密度,灵活应用强,方便二次开发应用。

高增益定向铜棒天线

CC系列组网硬件内部单元

CC系列节点模模组块

CC系列网关

2.3.2 CC系列节点模组

CC系列节点模组特点:

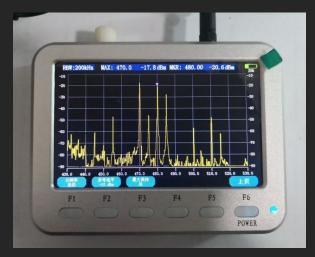
- 1、低成本,相比LoRa系列,CC系列芯片成本低,对于大容量节点而言,成本显著降低;
- 2、内置功率放大器,高隔离开关、高性能滤波器以及独立抗噪电路,提升了通信灵敏度,传输距离远,抗干扰能力强。
- 3、军品级标准,CC系列节点模块均采用高精度晶振, 电感等元器件, 性能稳定, 能较好地适应工业环境。
- 4、"SMA纯铜公接头"低损耗传输,信号强,信号不掉线;

2.3.3 CC系列网关

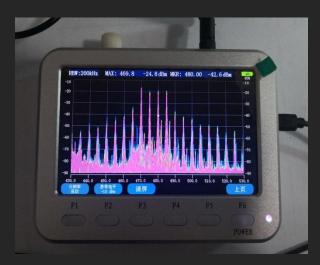
- 1、支持<mark>四路节点</mark>同时通信,**节点设备容量大**,一个网关可容纳 200个节点同时在线(每个节点又可通过485带多路数据);
- 2、同步TDMA机制,避免了异步泄漏与阻塞干扰,无内网干扰;
- 3、<mark>组网灵活</mark>,内部时序,通信速率等均可自由设置,网关可堆叠 使用,多路映射网关模式;
- 4、主节点电路内置功率放大器、高隔离开关、高性能滤波器以 及独立抗噪电路,提升了通信灵敏度,传输距离远,抗干扰能力 强;
- 5、扩展多种通信接口,支持高速串口/CAN总线/WAN以太网等;
- 6、<mark>调试信息显示,OLED</mark>液晶与状态指示灯显示通信状态;
- 7、<mark>协议自定义</mark>,广义透传,便于用户自行修改应用。

2.3.4 低成本高密度方案—CC系列组网系统

- 1、"时序化同步组网",无内网干扰,解决了时序异步组网的内网频谱干扰十分严重,容纳节点密度小等不足。
- 2、"高灵敏度,远距离通信"主节点内置 功率放大器、高隔离开关、独立抗噪电路 实现高灵敏度,广域覆盖,扩展通信距离 ,各种复杂环境均可灵活应用,如智能电 表采集,地下综合管廊, 市政环卫等。
- 3、CC系列网关时序、速率、节点容量等均可配置,灵活性高,支持"升级开发"用户自行修改设计。

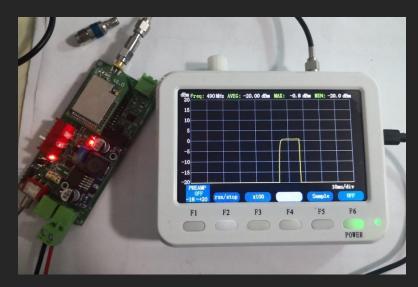


高密度创新组网方案 2.5 经典示例

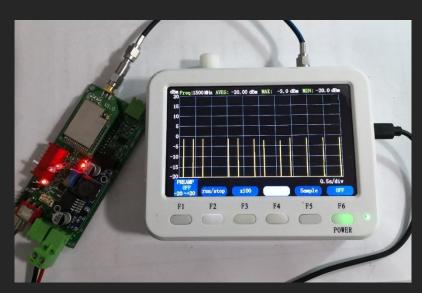

- 2.1 创新组网方案
- 2.2 远距离高密度方案
- 2.3 低成本高密度方案
- 2.4 硬件及现场测试

2.4.1 LoRa节点测试现场测试

采用自主研发的频谱仪(型号XT-129),测试LoRa节点的发射情况,频谱与色谱界面简单直观的呈现LoRa节点信号情况,确保LoRa节点的正常工作。


四路节点频谱测试

四路节点色谱图

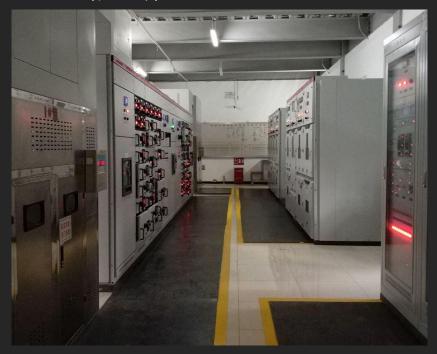

四路节点热力图

2.4.2 LoRa节点功率测试

采用自主研发动态射频功率计(型号PM-127),详细测试LoRa节点的动态发射功率,功率计类似示波器界面,直观的呈现LoRa节点发射的功率大小、周期和脉宽(频谱仪不能完成这动态功能)。

某时刻节点功率采集

周期节点功率采集

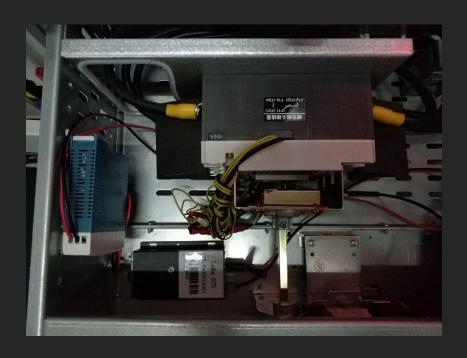


高密度创新组网方案 2.5 经典示例

- 2.1 创新组网方案
- 2.2 远距离高密度方案
- 2.3 低成本高密度方案
- 2.4 硬件及现场测试

2.5.1 典型案例—LoRa组网应用

基于LoRa网关系统已实施在某电气公司电气柜中,实时采集智能电表参数 ,上报云端。


现场部署电气柜分布

LoRa节点测试

2.5.2 典型案例—LoRa组网现场实施

LoRa网关节点安装在电气柜中,与传感器设备连接,LoRa网关安装在控制室内。

LoRa节点安装

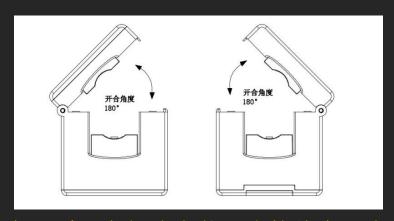
LoRa网关安装

2.5.3 典型案例—LoRa组网云端显示

LoRa网关将数据实时上报云端,登陆云端即可获取传感器实时数据

```
ntis:~/cereal
 16:04:34:1539158674-packet.py(line:329) processDataPacket() tid:1933571184 [INFO] Lora data
 16:04:34:1539158674-packet.py(line:78) decodeData() tid:1933571184 [INFO] Traffic data exist
 16:04:34:1539158674-packet.py(line:337) processDataPacket() tid:1933571184 [DEBUG] Data: {'crx': 19352, 'cmd': '\n\x03\x00\x16\x00\x06\w', 'ctx': 19382, 'gtx': 19352, 'configureTime': 1536219056, 'data': '\n
IO\xe5(\x00\x00\x00\x00\x00\x00\x00\x00g\xcf')
16:04:34:1539158674-cfgmanager.py(line:60) getCmdCfg() tid:1933571184 [DEBUG] Get command config from store(gid: 256, cid: 2, cmd: 0a03001600062577): {u'lora': {u'256': {u'confs': [{u'serial': {u'baud': 9600 } }
: '8, u'stopbits': 1, u'parity': 0}, u'cids': [u'1'], u'cmds': [u'0a03001600062577']}], u'interval': 5, u'time': 1536219056)], u'devices': [u'256': [u'1': [u'0a03001600062577': [u'1a': [u'UpdateTime': u'2018]]
):56+08:00', u'name': u'Ia', u'tmSetp': 5, u'regAddress': 22, u'regQuantity': 2, u'CmdId': 2, u'type': 5, u'CreateTime': u'2018-09-04T14:56:56+08:00'), u'Ic': (u'UpdateTime': u'2018-09-04T14:58:36+08:00', u'name': u'tmSetp': 5, u'regAddress': 26, u'regQuantity': 2, u'CmdId': 2, u'type': 5, u'CreateTime': u'2018-09-04T14:58:36+08:00'), u'Ib': (u'UpdateTime': u'2018-09-04T14:58:26+08:00', u'name': u'Ib', u'tmSetp': 5, u'regAddress': 26, u'regQuantity': 2, u'CmdId': 2, u'type': 5, u'regAddress': 26, u'regQuantity': 2, u'cmdId': 2, u'type': 5, u'type'
 :': 24, u'regQuantity': 2, u'CmdId': 2, u'type': 5, u'CreateTime': u'2018-09-04T14:58:26+08:00'}}}}}, u'time': 1536219056
 16:04:34:1539158674-cfgmanager.py(line:63) getCmdCfg() tid:1933571184 [ERROR] cfg:256-2-0a03001600062577 not found
16:04:35:1539158675-packet.py(line:253) readPacket() tid:1944056944 [DEBUG] packet read:0102000100019cb100215b90d7b000080a0300160006257700110a030c00000000000000000000006566633afca00004c2500004aab00004aabe29d
 16:04:35:1539158675-packet.py(line:290) processPacket() tid:1933571184 [DEBUG] processing 0102000100019cb100215b90d7b000080a0300160006257700110a030c00000000000003f6be633afca00004c2500004aabe029d
16:04:35:1539158675-packet.py(line:253) readPacket() tid:1944056944 [DEBUG] packet read:0101000100009cb2000c00015b90d7b005000000000b40
16:04:35:1539158675-packet.py(line:294) processPacket() tid:1933571184 [DEBUG] {'cid': 1, 'payloadLen': 33, 'version': 1, 'gid': 256, 'transId': 40113, 'type': 2, 'payload': '[\x90\xd7\xb0\x00\x08\n\x03\x00\x
(m/x00/x11/n/x03/x0c/x00/x00/x00/x00/x00/x00/x00/x00/x063/xaf/xca/x00/x00/x00/x00/xab/x00/x00/xab/3
 16:04:35:1539158675-packet.py(line:329) processDataPacket() tid:1933571184 [INFO] Lora data
 16:04:35:1539158675-packet.py(line:78) decodeData() tid:1933571184 [INFO] Traffic data exist
16:04:35:1539158675-packet.py(line:337) processDataPacket() tid:1935571184 [DEBUG] Data: ('crx': 19115, 'cmd': '\n\x03\x00\x16\x00\x06\w', 'ctx': 19493, 'gtx': 19115, 'configureTime': 1536219056, 'data': '\n
)\x00\x00\x00\x00\x00\x00\x007k\xe63\xaf\xca'}
16:04:35:1539158675-cfgmanager.py(line:60) getCmdCfg() tid:1933571184 [DEBUG] Get command config from store(gid: 256, cid: 1, cmd: 0a03001600062577): {u'lora': {u'256': {u'confs': [{u'serial': {u'baud': 9600 } }}
:': 8, u'stopbits': 1, u'parity': 0}, u'cids': [u'1'], u'cmds': [u'0a03001600062577'])], u'interval': 5, u'time': 1536219056)}, u'devices': {u'256': {u'1': {u'0a03001600062577': {u'Ia': {u'UpdateTime': u'2018-05-04714:56:56+08:00'}, u'name': u'Ia', u'tm5etp': 5, u'regAddress': 22, u'regQuantity': 2, u'CmdId': 2, u'type': 5, u'CreateTime': u'2018-09-04714:56:56+08:00'}, u'Ic': {u'UpdateTime': u'2018-09-04714:58:36+08:00', u'name': u'Ia', u'tm5etp': 5, u'regAddress': 22, u'regQuantity': 2, u'CmdId': 2, u'type': 5, u'CreateTime': u'2018-09-04714:56:56+08:00'}, u'Ic': {u'UpdateTime': u'2018-09-04714:58:36+08:00', u'name': u'Ia', u'tm5etp': 5, u'regAddress': 22, u'regQuantity': 2, u'CmdId': 2, u'type': 5, u'reateTime': u'2018-09-04714:56:56+08:00'}, u'Ic': {u'UpdateTime': u'2018-09-04714:58:36+08:00', u'name': u'Ia', u'tm5etp': 5, u'regAddress': 22, u'regQuantity': 2, u'CmdId': 2, u'type': 5, u'reateTime': u'2018-09-04714:56:56+08:00'}, u'loure the control of the control 
 u'tmSetp': 5, u'regAddress': 26, u'regQuantity': 2, u'CmdId': 2, u'type': 5, u'CreateTime': u'2018-09-04T14:58:36+08:00'), u'Ib': {u'UpdateTime': u'2018-09-04T14:58:26+08:00', u'name': u'Ib', u'tmSetp': 5, u'CmdId': 2, u'type': 5, u'type
i': 24, u'regQuantity': 2, u'CmdId': 2, u'type': 5, u'CreateTime': u'2018-09-04T14:58:26+08:00'}}}}}, u'time': 1536219056
 16:04:35:1539158675-packet.py(line:345) processDataPacket() tid:1933571184 [DEBUG] Modbus Data: 00000000000000003f6be633
16:04:35:1539158675-packet.py(line:360) processDataPacket() tid:1933571184 [DEBUG] Data: Ia, Value: (0.0.)
16:04:35:1539158675-packet.py(line:360) processDataPacket() tid:1933571184 [DEBUG] Data: Ic, Value: (0.0,)
16:04:35:1539158675-packet.py(line:360) processDataPacket() tid:1933571184 [DEBUG] Data: Ib, Value: (0.9214813113212585,)
 16:04:35:1539158675-packet.py(line:290) processPacket() tid:1933571184 [DEBUG] processing 0101000100009cb2000c00015b90d7b005000000000cb40
 16:04:35:1539158675-packet.py(line:294) processPacket() tid:1933571184 [DEBUG] {'cid': 0, 'payloadLen': 12, 'version': 1, 'gid': 256, 'transId': 40114, 'type': 1, 'payload': '\x00\x01[\x90\xd7\xb0\x05\x00\x00]
10,1
16:04:35:1539158675-packet.py(line:309) processHeartbeatPacket() tid:1933571184 [INFO] Lora heartbeat
16:04:35:1539158675-packet.py(line:313) processHeartbeatPacket() tid:1933571184 [INFO] Error: 0, Data: {'configureTime': 1536219056, 'swVersion': 1, 'clients': 0, 'interval': 1280}
 16:04:35:1539158675-packet.py(line:315) processHeartbeatPacket() tid:1933571184 [INFO] Heartbeat: {'configureTime': 1536219056, 'swVersion': 1, 'clients': 0, 'interval': 1280}
16:04:36:1539158676-datacache.py(line:73) cacheProcess() tid:1891628144 [INFO] PeriodCache processing data...:5
16:04:36:1539158676-datacache.py(line:59) dataHandler() tid:1891628144 [DEBUG] {u'Ia': [(0.0,)], u'Ic': [(0.0,)], u'Ib': [(0.9214813113212585,)]}
 16:04:36:1539158676-datacache.py(line:64) dataHandler() tid:1891628144 [DE8UG] ('data': {u'Ia': 0.0, u'Ic': 0.0, u'Ib': 0.9214813113212585), 'time': 1539158676171L}
 16:04:36:1539158676-reporter.py(line:80) buildDataMsg() tid:1891628144 [DEBUG] Ia;0.0;8|Ic;0.0;8|Ib;0.921481311321;8
 16:04:36:1539158676-reporter.py(line:53) reportData() tid:1891628144 [DEBUG] DataReporter publishing msg 18591: 1.5.0.RPIB827E84D96E1.8827E84D96E1.192.168.199.153.1539158676171.Ia:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0:8|Ic:0.0
```

2.5.4 典型案例—CC系列组网应用


CC系列组网系统已实施在南方某电气公司在线监测电路中,无线通讯上传采集数据,实现实时在线监测电缆温度、电流、带电状态。

2.5.5 典型案例—无线CT单元

★ "无线感应取电",自主创新研发享有专利保护,采用双电源取电,可通过电缆周围感应电磁能量或内部电池供电,无需外部供电。

产品采用卡扣式安装,直接将产品安装在合适尺寸的电缆上即可。

实时测量	
电流	电缆实时电流
温度	电缆温度
带电状态	监测电缆的带电状态
振动	振动有/无
通讯	
通讯方式	无线通信
发射次数	无线发射次数累加

2.5.6 典型案例—无线CT单元

无线CT应用于 0.4kV , 频率 50~60Hz 的低压开关柜线缆状态监测。

- 1、将产品安装在待监测部位 , 温度传感器贴紧电缆 , 准确闭合 CT。
- 2、 监测回路电流大于产品启动电流 , 传感器进入正常工作模式 , 采集温度、 电流及其他 相关数据 , 通过无线通讯上传至采集装置。
- 3、若线路处于空载或负载电流小于启动电流 , 则传感器使用内部电池供电保持工作状态。 数据传输:

产品通过 433MHz 无线通讯上传采集数据至接收装置。 当以电池供电时,每 180 秒上传一次数据; 当以互感器取电时,每 15 秒上传一次数据。

主要上传数据包含:

温度: 监测部位温度数据	电流: 监测电缆电流
振动:线缆是否有振动	带电状态: 监测线路的带电状态
发射次数:无线通讯累计发射次数	版本信息: 传感器软硬件版本号

物联网应用场景

3.1 物联网行业应用

交通与运输

- Automotive OEM
- Vehicle Tracking
- Container Tracking
- Ship Tracking
- Fleet Management
- OBD

能源

- Electricity Meter Gas Meter Water Meter

- Water Meter
 Heat Meter
 Smart Grid
 Wind Turbines
 Solar Panel
 Charging Pile

支付

- Wireless POS
- Cash RegisterATM
- Vending MachineTop-up Machine

安全

- Alarm
- CameraVideo Surveillance

智慧城市

- Street Lighting
 Traffic Light
 Elevator
 Digital Signage
 Advertisement Display
 LED Lighting
 Garbage Bin Monitoring
 Parking

网关

- DTU
- Consumer RouterIndustrial RouterVOIP
- Server

工业

- Industrial PDARugged Tablet PCPipeline Management
- Robot
- Flow Meter
- RefrigeratorIndustrial ControlIndustrial Monitoring

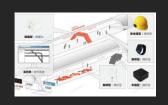
- Personal Tracker
 Pet Tracker
 Wearables
 Elderly Monitoring
 Remote Medical
- Equipment
- GlucometerBlood Pressure Monitor
 • Gambling Machine

农业与经济

- Trail CameraFarm Machinery
- Irrigation
 Meteorological Station
 Wildlife Tracking
- Environment Monitoring

3.2 物联网高密度组网典型应用

典型物联网应用


4.智能管廊

6.无人港口

7.数字健康

8.智慧工地

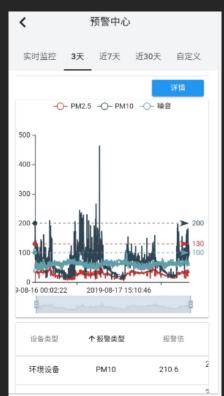
9.智能供应链

10.智能农牧业

3.3 物联网高密度组网场景—智能家居

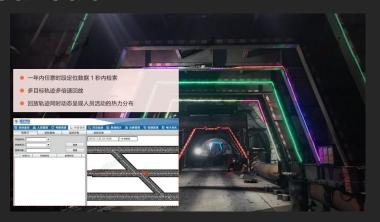
智能家居

3.4 物联网高密度组网场景—智慧大棚、智慧牧场


智慧大棚

智慧牧场

3.5 物联网高密度组网场景——智慧工地



智慧工地

3.6 物联网高密度组网场景—智能管廊

智能管廊

3.7 物联网高密度组网场景—无人港口

无人港口——全自动化装卸

The end!